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Abstract

This paper presents a study of the feasibility of an elliptic curve cryptosystem an 8-bit microcontroller
as well as an example implementation. The cryptosystem is implemented using FIPS PUB 186-2 [3] as
an exemplar. The focus of this paper is implementation efficiency.
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1 Introduction

An implementation of an elliptic curve cryptosystem on a Microchip PIC18F2550 microcontroller is outlined.
The 8-bit bus width along with the data memory and processor speed limitations present additional challenges
versus implementation on a general purpose computer. All algorithms required to perform an elliptic curve
Diffie-Hellman key have been implemented.

2 System Description

This system will demonstrate the creation of a shared secret between the host PC and the embedded target
(microcontroller).

2.1 Elliptic Curve

The chosen NIST curve is P-256 which uses the following elliptic curve over a prime field with prime p

y2 = x3 − 3x+

41058363725152142129326129780047268409114441015993725554835256314039467401291 (1)

p = 2256 − 2224 + 2192 + 296 − 1 =

1115792089210356248762697446949407573530086143415290314195533631308867097853951 (2)

Which has order:

r = 115792089210356248762697446949407573529996955224135760342422259061068512044369 (3)

For this paper, the following base point will be used:

G = (48439561293906451759052585252797914202762949526041747995844080717082404635286,

36134250956749795798585127919587881956611106672985015071877198253568414405109) (4)
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2.2 Elliptic Curve Diffie-Hellman

The Diffie-Hellman key exchange creates a shared secret between two communicating parties. Both parties
have agreed on the choice of elliptic curve, underlying field, and base point and these are made public. To
create a shared secret, both parties (Alice and Bob) generate a random value in the range (1, r − 1) where
r is the order of the elliptic curve.

Sa = Alice’s Secret Key
Sb = Bob’s Secret Key

Alice and Bob then calculate their public key by multiplying their respective secret numbers times the chosen
base point on the curve.

Pa = Sa(Gx, Gy) =Alice’s Public Key
Pb = Sb(Gx, Gy) =Bob’s Public Key

Alice and Bob then exchange public keys. Now Alice and Bob multiply each other’s public key with their
secret key.

Shareda = SaSb(Gx, Gy) =Shared secret as calculated by Alice
Sharedb = SbSa(Gx, Gy) =Shared secret as calculated by Bob

Since this operation is commutative, the shared secrets calculated by Alice and Bob are the same.

Shareda = Sharedb

During this exchange, only the public keys are visible by anyone other than Alice and Bob. So the adversary
needs to calculate the discrete logarithm of an element. The elliptic curve discrete logarithm problem is as
follows.

Given two points, P and B on an elliptic curve, find an integer s such that P = sB

At the current time, this problem is believed to be intractable given a properly constructed elliptic curve
with a sufficiently large order.

2.3 Hardware Design

The hardware was designed to be a small printed circuit board with minimized component count that op-
erates from a personal computer’s universal serial bus (USB) port. The hardware communicates and draws
power solely from this connection.

2.3.1 Digital Circuit Design

To minimize the processing time, the hardware circuit was designed with a clock rate of 48 Megahertz (MHz)
which is the maximum clock rate of the PIC18F2550 microcontroller. This microcontroller has an internal
USB interface with minimal external parts required which led to a simplified design as shown in Figure 1

2.3.2 Random Number Generator

As the PIC18F2550 microcontroller and most other microcontrollers do not contain a random number gener-
ator, it is necessary to either obtain random numbers from another source or incorporate a hardware random
number generator into the design. For cryptographic uses, it is very important that random numbers are
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Figure 1: Schematic Diagram

truly random and cannot be guessed or predicted in any way.

There are several methods for generating random numbers in hardware and one of the most suited to this
application is using the Avalanche effect of a semiconductor diode. The Avalanche effect is created by
reverse-biasing an Avalanche or Zener diode. The noise generated is then amplified and passed into the
analog-to-digital converter (ADC) of the microcontroller. The lowest significant bits (LSBs) are discarded
to reduce the effects of nonlinearities in the ADC. The most significant bits (MSBs) are also discarded to
ensure that the captured bits don’t include extraneous zeros that are above the level of the noise.

The circuit shown in Figure 2 was tested to provide the random noise input to the microcontroller. The
base to emitter junction of Q1 is used as the avalanche diode in this implementation. The final design did
not include this random number generator because of the higher voltage requirements of this circuit to reach
the avalanche region of the diode.

This circuit was prototyped on a perfboard as shown in Figure 3 and connected to the analog to digital
converter on the microcontroller.

The source data collected from the tests were put through the Diehard tests[1] for random numbers and had
excellent results as shown in Figure 4.

2.3.3 Printed Circuit Board (PCB)

The printed circuit board was produced by mechanical etching. The gerber files produced from the FreePCB
software were imported into CopperCAM where the isolation routing data was created and exported as
g-code. A computer numeric control (CNC) router was then used to isolation route a blank double-sided
copper clad PCB.
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Figure 2: Schematic Diagram of Random Number Generator

Figure 3: Prototype Random Number Generator

2.3.4 Assembly and Testing

The routed PCB was then hand assembled using standard techniques and is shown in Figure 5. The finished
prototype was then tested for basic functionality and interfacing to a personal computer.

3 Software

The microcontroller software is written using a framework of C language with hand coded assembly language
for most of the algorithms to improve efficiency. The code runs directly on the microcontroller without an
operating system.
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Test Results
RGB Bit Distribution PASSED at > 5%

RGB Generalized Minimum Distance PASSED at > 5%
RGB Permutations PASSED at > 5%
RGB Lagged Sum* PASSED at > 5%
RGB Permutations PASSED at > 5%
Diehard Birthdays PASSED at > 5%

Diehard 32x32 Binary Rank PASSED at > 5%
Diehard 6x8 Binary Rank PASSED at > 5%

Diehard Bitstream PASSED at > 5%
Diehard OPSO PASSED at > 5%
Diehard OQSO PASSED at > 5%
Diehard DNA PASSED at > 5%

Diehard Count the 1s (stream) PASSED at > 5%
Diehard Count the 1s (byte) PASSED at > 5%

Diehard Parking Lot PASSED at > 5%
Diehard Minimum Distance (2d Circle) PASSED at > 5%
Diehard 3d Sphere (Minimum Distance) PASSED at > 5%

Diehard Squeeze PASSED at > 5%
Diehard Runs PASSED at > 5%
Diehard Craps PASSED at > 5%

Marsaglia and Tsang GCD PASSED at > 5%
STS Monobit PASSED at > 5%
STS Runs PASSED at > 5%
STS Serial PASSED at > 5%

* POSSIBLY WEAK on one run

Figure 4: Results of Diehard Tests

Figure 5: Photo of Completed Prototype Hardware

3.1 Algorithms Required

Since the word size is 8 bits, each 256 bit number is broken up into 8 bit chunks. The inputs to each
algorithm are represented as A and B and are broken up into 32 8 bit bytes as follows:
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A =
31∑
i=0

ai2
8i (5)

B =
31∑
i=0

bi2
8i (6)

3.1.1 Addition in a Prime Field

Addition is performed using the standard algorithm in 8 bit words using a hardware carry bit as shown
below. The subsequent additions utilize an instruction (ADDWFC) to add the file register to the working
register and add the carry bit in a single instruction cycle. This minimizes the cycles required to perform
the 256 bit addition. If there is a final carry, the result is reduced by adding r = 2256 = 2224 − 2192 − 296 +1

Pseudocode:

carry=0

for i = 0 to 31

c(i) = a(i) + b(i) + carry (Limited to 8 bits by ADDWFC command / memory width)

if (a(i)+b(i)+carry) > 255 (Overflow bit from ADDWFC command)

carry=1

else

carry=0

endif

endfor

if carry=1

add r (see text)

C=A+B

3.1.2 Subtraction in a Prime Field

Subtraction is performed using the standard algorithm in 8 bit words using a hardware borrow bit. as shown
below. The subsequent subtractions utilize an instruction (SUBWFB) to subtract the file register from the
working register and subtract the borrow bit in a single instruction cycle. This minimizes the cycles required
to perform the 256 bit subtraction. If there is an outstanding borrow, the output is represented as a two’s
complement negative number and p is added to put it in the interval (0, p− 1)

Pseudocode:

borrow=0

for i = 0 to 31

c(i) = a(i) - b(i) - borrow (Limited to 8 bits by SUBWFB command / memory width)

if (a(i)-b(i)-borrow) < 0 (Overflow bit from SUBWFB command)

borrow=1

else

borrow=0

endif

endfor

if borrow=1

add p using addition algorithm

C=A-B
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3.1.3 Multiplication in a Prime Field

The PIC18F2550 microcontroller contains a hardware 8 bit x 8 bit multiplier that significantly reduces the
number of cycles required to do a multiplication. To take advantage of this hardware multiplier, the standard
long multiplication algorithm was used as follows:

Pseudocode:

for k = 0 to 31

for n = 0 to 31

PRODH:PRODL = a(n)*b(k) (PRODH:PRODL represents the concatenated 8 bit outputs of the multiply)

c(n+k)=c(n+k) + PRODL (add with carry)

c(n+k+1)=c(n+k+1) + PRODH (add with carry)

endfor

endfor

C=A*B

3.1.4 Modular Reduction in a Prime Field

Since P-256 uses a generalized Mersenne prime modulus, fast methods for modular reduction exist [5]. The
straight forward method for doing modulus reduction is to perform the standard division algorithm and
retain the remainder. This is particularly slow on a low-power 8-bit microcontroller.

The algorithm shown by Solinas [5] and duplicated in FIPS-186 assumes a computer with a 32 bit bus width.

The generalized Mersenne prime is:

p = 2256 − 2224 + 2192 + 296 − 1 (7)

Let

B = A mod p (8)

Since Ai are 32 bits, every integer less than p2 can be written as [5]:

A = A15 · 2480 +A14 · 2448 +A13 · 2416 +A12 · 2384 +A11 · 2352 +
A10 · 2320 +A9 · 2288 +A8 · 2256 +A7 · 2224 +A6 · 2192 +
A5 · 2160 +A4 · 2128 +A3 · 296 +A2 · 264 +A1 · 232 +A0 (9)

And since we are working with an 8-bit word size, for 8-bit ai, every integer less than p2 can be written as:

a = a63 · 2504 + a62 · 2496 + a61 · 2488 + a60 · 2480 + · · ·
· · ·+ a4 · 240 + a3 · 232 + a2 · 224 + a1 · 216 + a0 (10)

and the 256 bit term for A is:

A = a = (a63||a62|| · · · ||a1||a0) (11)

From Solinas [5], the expression for B is:
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B = T + 2S1 + 2S2 + S3 + S4 −D1 −D2 −D3 −D4 mod p (12)

where the 256-bit terms are:

T = ( A7 || A6 || A5 || A4 || A3 || A2 || A1 || A0 )
S1 = ( A15 || A14 || A13 || A12 || A11 || 0 || 0 || 0 )
S2 = ( 0 || A15 || A14 || A13 || A12 || 0 || 0 || 0 )
S3 = ( A15 || A14 || 0 || 0 || 0 || A10 || A9 || A8 )
S4 = ( A8 || A13 || A15 || A14 || A13 || A11 || A10 || A9 )
D1 = ( A10 || A8 || 0 || 0 || 0 || A13 || A12 || A11 )
D2 = ( A11 || A9 || 0 || 0 || A15 || A14 || A13 || A12 )
D3 = ( A12 || 0 || A10 || A9 || A8 || A15 || A14 || A13 )
D4 = ( A13 || 0 || A11 || A10 || A9 || 0 || A15 || A14 )

(13)

and to get to 8-bit words, the following substitutions are made:

A0 = ( a3 || a2 || a1 || a0 )
A1 = ( a7 || a6 || a5 || a4 )
A2 = ( a11 || a10 || a9 || a8 )
A3 = ( a15 || a14 || a13 || a12 )
A4 = ( a19 || a18 || a17 || a16 )
A5 = ( a23 || a22 || a21 || a20 )
A6 = ( a27 || a26 || a25 || a24 )
A7 = ( a31 || a30 || a29 || a28 )
A8 = ( a35 || a34 || a33 || a32 )
A9 = ( a39 || a38 || a37 || a36 )
A10 = ( a43 || a42 || a41 || a40 )
A11 = ( a49 || a46 || a45 || a44 )
A12 = ( a51 || a50 || a49 || a48 )
A13 = ( a55 || a54 || a53 || a52 )
A14 = ( a59 || a58 || a55 || a56 )
A15 = ( a63 || a62 || a61 || a60 )

(14)

3.1.5 Inverse in a Prime Field

The inverse of a number in the field modulo p is calculated using the extended euclidean algorithm as follows:

Pseudocode:

u=a

v=p

x1=1

x2=0

while (u != 1) && (v != 1)

while !(u & 1) (while u is even)

u=u>>1 (divide by 2)

if !(x1 & 1) (if x1 is even)

x1=x1>>1 (divide by 2)

else

x1=(x1+p)>>1 (x1=(x1+p)/2 )

endif

endwhile

while !(v & 1) (while v is even)
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v=v>>1 (divide by 2)

if !(x2 & 1) (if x2 is even)

x2=x2>>1 (divide by 2)

else

x2=(x2+p)>>1 (x2=(x2+p)/2 )

endif

endwhile

if (u > v)

u=u-v

x1=x1-x2

else

v=v-u

x2=x2-x1

endif

endwhile

if (u==1)

inverse = x1

else

inverse = x2

endif

3.2 Elliptic Curve Point Addition

Let P = (Px, Py), Q = (Qx, Qy) be points on an elliptic curve over a prime field with neither equal to the
point at infinity and P 6= −Q. Then the following rules are used to add two points using affine coordinates.

λ =
Py−Qy

Px−Qx

S = (Sx, Sy) = P +Q
Sx = λ2 − Px −Qx

Sy = λ(Qx − Sx)−Qy

3.3 Elliptic Curve Point Doubling

Let P = (Px, Py) be a point on the NIST p256 elliptic curve with P not equal to the point at infinity. Then
the following rules are used to double a point using affine coordinates.

λ =
3(Q2

x−1)
2Qy

D = (Dx, Dy) = 2P
Dx = λ2 − Px −Qx

Dy = λ(Qx −Dx)−Qy

3.4 Elliptic Curve Point Multiplication

Point multiplication isn’t defined as straight forward like addition or doubling and the most straight forward
algorithm to perform this operation uses an add and double method known also as the MSB binary method
[2]. Let P = (Px, Py) be a point on an elliptic curve with P not equal to the point at infinity and let k be
an integer in the range (2, r − 1) where r is the order of the curve. The algorithm follows:
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Pseudocode:

Q= 0 (point at infinity)

for i = 255 to 0

Q=2Q (double)

if k(i) == 1 (bit i of k)

then Q=Q+P (addition)

endif

endfor

Q=k*P

4 Results

The efficiency of each of the algorithms in the prime field was measured by counting the cycles used on
a simulator and then verifying the results by running in real hardware. The elliptic curve point addition,
doubling, and multiplication results were calculated using the actual times from the prime field algorithms
and the number of them required. Since the number of ’1’ bits affects the number of additions that must be
performed, this was estimated to be one half of the total length (i.e. 256/2 = 128 bits). The multiplication,
modulus p, and inverse algorithms are significantly slower than the addition and subtraction algorithms as
shown in Figure 6.

Algorithm Cycles Time
Addition 206 17.2 uS
Subtraction 273 22.75 uS
Multiplication 15803 1317 uS
Modulus p reduction 12790 1066 uS
Inverse 31280 2607 uS
Elliptic Curve Point Addition (1 Inv, 6 Sub, 2 Mul) 64524 5.4 mS
Elliptic Curve Point Doubling (1 Inv, 5 Sub, 4 Mul) 95857 8.0 mS
Elliptic Curve Point Multiplication (256 EC Dbl, 128 EC Add) 32798464 2.73 S

Figure 6: Algorithm Efficiency

Assuming that the communications time is negligible, the PIC18F2550 microcontroller can perform a Diffie-
Hellman key exchange in approximately 5.4 seconds (2 elliptic curve point multiplications). The addition of
the improvements listed in the next section should be able to significantly reduce this time.

The implementation of the prime field algorithms used 635 bytes of RAM (data) memory and 4072 bytes
of ROM (program) memory. This accounts for approximately 31 percent of the RAM (data) memory and
approximately 13 percent of the ROM (program) memory available on the microcontroller.
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5 Possible Improvements

5.1 Elliptic Curve Coordinates

Although the use of affine coordinates is the most straight forward, the use of standard projective or Ja-
cobian projective coordinates may significantly speed up the elliptic curve Diffie-Hellman algorithm. For
example [2] , a point doubling using affine coordinates uses 1 inversion, 2 multiplications, and 2 squarings.
The same operation using Jacobian projective coordinates uses 4 multiplications and 2 squarings. Since
the computational cost of computing an inverse is significantly more than a multiplication, the Jacobian
projective coordinates is faster for this operation. Further research is required to determine which mix of
coordinate systems is most efficient for this application.

5.2 Dedicated Squaring Algorithm

In this implementation, squaring is performed using a multiplication algorithm. The availability of a hardware
8x8 bit multiplier makes the multiplication significantly faster and more efficient than on microcontrollers
that don’t have this hardware. A performance analysis of the hardware multiplier versus software squaring
may uncover possible performance gains.

5.3 Modular Reduction Algorithm Improvement

The fast modular reduction shown in Solinas’s paper [5] was calculated for a 32 bit word size machine. This
implementation uses a substitution of four 8 bit words into the algorithm. Additional performance gains
may be uncovered by deriving the algorithm for an 8 bit word size.

5.4 Modular Reduction Coding Improvement

Currently, the modular reduction algorithm constructs each temporary variable (T, S1, S2, · · ·D3, D4) in its
entirety then calls the addition or subtraction algorithm. Since many of the words that compose these tem-
porary variables are zero, the algorithm may be coded to only add or subtract the non-zero values which
would result in a speed improvement while possibly increasing the memory size.

5.5 Speed versus Memory Trade offs

This implementation can be made faster by unrolling all of the loops in the software to eliminate the counts
and compares used for the looping operation. Conversely, it could also be made smaller (more memory
efficient) by using recursion and additional looping. This trade off should be considered in future implemen-
tations.

5.6 Code Reorganization

Most of the functions implemented have a separate output variable so that the operation can be performed
in a non-destructive way. Reorganizing to allow in-place operations will eliminate the copies and most of
the zeroing that is done at the beginning of each function. This will speed up most of the field operations
by over 100 cycles.
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5.7 Assembly Coding

Most of the computationally intensive sections of this implementation have been coded in assembly language
which reduces a number of inefficiencies injected by a C compiler. Additional speed and memory efficiency
may be gained by hand coding the entire implementation. This is a trade off with available time and read-
ability versus possibly negligible performance gains.

6 Conclusion

The PIC18F2550 microcontroller is easily capable of performing an elliptic curve Diffie-Hellman key ex-
change. With an working time of 5.4 seconds per exchange, this type of cryptography is not suited to high
speed data transfers on this device. For high-speed transfers, the exchanged secret may be used as the key
in a symmetric cipher such as Rijndael (as used in the Advanced Encryption Standard [4] ).
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8 Appendix A. Source Code for Algorithms

/*********************************************/

/* Large Integer Math Library */

/* for arithmetic in the prime field */

/* modulus = 2^256 - 2^224 + 2^192 + 2^96 -1 */

/* by Chris K Cockrum, Spring 2009 */

/* CPU: Microchip PIC18F2550 */

/*********************************************/

#include <18F2550.h>

#fuses HSPLL,NOWDT,NOPROTECT,NOLVP,NODEBUG,USBDIV,PLL1,CPUDIV2,VREGEN

#DEVICE ADC=10

#use delay(clock=48000000)

/* Define additional registers needed for ASM code */

#define STATUS 0x0FD8

#define FSR0L 0x0FE9

#define FSR0H 0x0FEA

#define FSR1L 0x0FE1

#define FSR1H 0x0FE2

#define FSR2L 0x0FD9

#define FSR2H 0x0FDA

#define INDF0 0x0FEF

#define INDF1 0x0FE7

#define INDF2 0x0FDF

#define POSTINC0 0x0FEE

#define POSTINC1 0x0FE6

#define POSTINC2 0x0FDE

#define POSTDEC0 0x0FED

#define POSTDEC1 0x0FE5

#define POSTDEC2 0x0FDD

#define PREINC0 0x0FEC

#define PREINC1 0x0FE4

#define PREINC2 0x0FDC

#define PRODH 0x0FF4

#define PRODL 0x0FF3

/* Format of large integers */

/* 0x010203 ... 32 = {0x32, 0x31, 0x29, ... 0x01} */

/* This is done to easily increment pointers starting with the LSB */

/* Define my secret number */

/* This should be randomly generated it’s easier to demonstrate with a fixed number */

byte secret[32] = { 0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF,

0xAB,0xAD,0xBA,0xBE,0xAB,0xAD,0xBA,0xBE,

0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF,

0xAB,0xAD,0xBA,0xBE,0xAB,0xAD,0xBA,0xBE };

/* Using NIST prime field p256 = 2^256 - 2^224 + 2^192 + 2^96 -1 */

/* Define Base Point on Elliptic Curve */
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byte Gx[32]={ 0x96, 0xc2, 0x98, 0xd8, 0x45, 0x39, 0xa1, 0xf4,

0xa0, 0x33, 0xeb, 0x2d, 0x81, 0x7d, 0x03, 0x77,

0xf2, 0x40, 0xa4, 0x63, 0xe5, 0xe6, 0xbc, 0xf8,

0x47, 0x42, 0x2c, 0xe1, 0xf2, 0xd1, 0x17, 0x6b };

byte Gy[32]={ 0xf5, 0x51, 0xbf, 0x37, 0x68, 0x40, 0xb6, 0xcb,

0xce, 0x5e, 0x31, 0x6b, 0x57, 0x33, 0xce, 0x2b,

0x16, 0x9e, 0x0f, 0x7c, 0x4a, 0xeb, 0xe7, 0x8e,

0x9b, 0x7f, 0x1a, 0xfe, 0xe2, 0x42, 0xe3, 0x4f };

byte x[32] = { 0x11,0x02,0x03,0x04,0x05,0x06,0x07,0x08,

0x11,0x02,0x03,0x04,0x05,0x06,0x07,0x08,

0x11,0x02,0x03,0x04,0x05,0x06,0x07,0x08,

0x11,0x02,0x03,0x04,0x05,0x06,0x07,0xf8};

byte y[32] = { 0x01,0xC2,0x03,0x04,0x05,0x06,0x07,0x08,

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,

0x01,0x02,0x03,0x04,0x05,0x06,0x07,0xF8};

/* Global Variables */

byte z[32]; /* For Testing */

byte bz[64]; /* For Testing */

byte tempm[32]; /* Temp for mod p and invert */

byte tempm2[32]; /* Temp for mod p and invert */

byte tempas[32]; /* Temp for add/subtract */

byte r[32];

byte s[32];

long time;

byte u[32],v[32],x1[32],x2[32]; /* For Binary Extended Euclidean Algorithm (lip_inv) */

/* This is added after a subtract if the answer is negative (2’s complement */

static byte modulus[32]={ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x01,0x00,0x00,0x00,0xff,0xff,0xff,0xff };

/* This is added after an addition if the answer has a carry */

static byte reducer[32]={ 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0xfe,0xff,0xff,0xff,0x00,0x00,0x00,0x00};

/* Function prototypes */

void lip_mul(byte *A, byte *B, byte *C);

void lip_inv(byte *A, byte *B);

void lip_copy(byte *A, byte *B);

void lip_modp(byte *A, byte *B);

void lip_add(byte *A, byte *B, byte *C);

void lip_sub(byte *A, byte *B, byte *C);

/* Internal Functions */
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int lip_addt(byte *A, byte *B, byte *C);

int lip_subt(byte *A, byte *B, byte *C);

void lip_rshift(byte *A);

int lip_notzero(byte *A);

/********************************/

/* Function Name: lip_add */

/* C = A + B */

/* A,B,C = 32 byte arrays */

/* Return: N/A */

/********************************/

void lip_add(byte *A, byte *B, byte *C)

{

if(lip_addt(A,B,C))

{

lip_addt(C,reducer,tempas);

lip_copy(tempas,C);

}

}

/********************************/

/* Function Name: lip_sub */

/* C = A - B */

/* A,B,C = 32 byte arrays */

/* Return: N/A */

/********************************/

void lip_sub(byte *A, byte *B, byte *C)

{

if(lip_subt(A,B,C))

{

lip_addt(C,modulus,tempas);

lip_copy(tempas,C);

}

}

/********************************/

/* Function Name: lip_modp */

/* A = B mod modulus */

/* A = 32 byte array */

/* B = 64 byte array */

/* Return: N/A */

/********************************/

void lip_modp(byte *A, byte *B)

{

BYTE n;

/* A = T */

lip_copy(B,A);

/* Form S1 */

for(n=0;n<12;n++)

tempm[n]=0;

for(n=12;n<32;n++)

tempm[n]=B[n+32];
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/* tempm2=T+S1 */

lip_add(A,tempm,tempm2);

/* A=T+S1+S1 */

lip_add(tempm2,tempm,A);

/* Form S2 */

for(n=0;n<12;n++)

tempm[n]=0;

for(n=12;n<28;n++)

tempm[n]=B[n+36];

for(n=28;n<32;n++)

tempm[n]=0;

/* tempm2=T+S1+S1+S2 */

lip_add(A,tempm,tempm2);

/* A=T+S1+S1+S2+S2 */

lip_add(tempm2,tempm,A);

/* Form S3 */

for(n=0;n<12;n++)

tempm[n]=B[n+32];

for(n=12;n<24;n++)

tempm[n]=0;

for(n=24;n<32;n++)

tempm[n]=B[n+32];

/* tempm2=T+S1+S1+S2++S2+S3 */

lip_add(A,tempm,tempm2);

/* Form S4 */

for(n=0;n<12;n++)

tempm[n]=B[n+36];

for(n=12;n<24;n++)

tempm[n]=B[n+40];

for(n=24;n<28;n++)

tempm[n]=B[n+28];

for(n=28;n<32;n++)

tempm[n]=B[n+4];

/* A=T+S1+S1+S2++S2+S3+S4 */

lip_add(tempm2,tempm,A);

/* Form D1 */

for(n=0;n<12;n++)

tempm[n]=B[n+44];

for(n=12;n<24;n++)

tempm[n]=0;

for(n=24;n<28;n++)

tempm[n]=B[n+8];

for(n=28;n<32;n++)

tempm[n]=B[n+12];
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/* tempm2=T+S1+S1+S2++S2+S3+S4-D1 */

lip_sub(A,tempm,tempm2);

/* Form D2 */

for(n=0;n<16;n++)

tempm[n]=B[n+48];

for(n=16;n<24;n++)

tempm[n]=0;

for(n=24;n<28;n++)

tempm[n]=B[n+12];

for(n=28;n<32;n++)

tempm[n]=B[n+16];

/* A=T+S1+S1+S2++S2+S3+S4-D1-D2 */

lip_sub(tempm2,tempm,A);

/* Form D3 */

for(n=0;n<12;n++)

tempm[n]=B[n+52];

for(n=12;n<24;n++)

tempm[n]=B[n+20];

for(n=24;n<28;n++)

tempm[n]=0;

for(n=28;n<32;n++)

tempm[n]=B[n+20];

/* tempm2=T+S1+S1+S2++S2+S3+S4-D1-D2-D3 */

lip_sub(A,tempm,tempm2);

/* Form D4 */

for(n=0;n<8;n++)

tempm[n]=B[n+56];

for(n=8;n<12;n++)

tempm[n]=0;

for(n=12;n<24;n++)

tempm[n]=B[n+24];

for(n=24;n<28;n++)

tempm[n]=0;

for(n=28;n<32;n++)

tempm[n]=B[n+24];

/* A=T+S1+S1+S2++S2+S3+S4-D1-D2-D3-D4 */

lip_sub(tempm2,tempm,A);

}

/********************************/

/* Function Name: lip_mul */

/* C = A x B */

/* A,B = 32 byte arrays */

/* C = 64 byte array */

/* Return: N/A */

/********************************/

void lip_mul(byte *A, byte *B, byte *C)
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{

BYTE shift=0; /* Keeps track of digit in output */

BYTE out_loop; /* Main loop counter */

BYTE loop; /* Loop variable */

BYTE carryL; /* CarryL variable */

BYTE carryH; /* CarryH variable */

#asm

; Clear output variable = C

movff C, FSR1L

movff &C+1, FSR1H

movlw 64 ; Copy 64 to w

movwf loop ; Copy w to loop

loopClear:

clrf POSTINC1 ; Clear C(n)

decfsz loop ; loop test

bra loopClear ; jump

movlw 31 ; Set outer loop counter to 31

movwf out_loop

; Set up pointers

movff A, FSR0L

movff &A+1, FSR0H

movff B, FSR1L

movff &B+1, FSR1H

movff C, FSR2L

movff &C+1, FSR2H

movlw 31 ; Set loop counter to 31

movwf loop

movf POSTINC0,w ; Move A to w

mulwf INDF1 ; PRODH:PRODL = A(0) * B(0)

movff PRODL, POSTINC2 ; C(0)=PRODL

movff PRODH, INDF2 ; C(1)=PRODL

loop01:

movf POSTINC0, w ; w=A(i)

mulwf INDF1 ; PRODH:PRODL = A(i)* B(n)

movf PRODL, w ; w=PRODL

addwf POSTINC2 ; C(n)=C(n)+w

movf PRODH, w ; w=PRODH

addwfc INDF2 ; C(n)=C(n)+w+carry flag

decfsz loop ; loop test

bra loop01 ; jump

movlw 31 ; Set outer loop counter to 31

movwf out_loop

clrf carryH

movff B, FSR1L

movff &B+1, FSR1H

loopOuter:
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movff A, FSR0L

movff &A+1, FSR0H

movff C, FSR2L

movff &C+1, FSR2H

; Shift index of c by shift

incf shift ; Increment shift

movf shift,w ; Copy shift to w

addwf FSR2L, 1 ; Add shift to FSR2L

movlw 0 ; Zero the w register

addwfc FSR2H, 1 ; Add carry to FSR2H

movf POSTINC0,w ; Move A to w

mulwf PREINC1 ; PRODH:PRODL = A(i) * B(n) and ++n

movf PRODL,w ; w=PRODL

addwf POSTINC2 ; C(k)=C(k)+PRODL and k++Memory vs Speed Tradeoffs

movf PRODH, w ; w=PRODH

addwfc INDF2 ; C(k)=C(k)+PRODH+carryflag

clrf carryH ; carryH=0

btfsc STATUS,0 ; test carry flag

bsf carryH,0 ; carryH=1

movlw 31 ; Set loop counter to 31

movwf loop

loop02:

movf POSTINC0,w ; Move A to w

mulwf INDF1 ; PRODH:PRODL = A(i) * B(n)

movf PRODL,w ; w=PRODL

addwf POSTINC2 ; C(k)=C(k)+PRODL and k++

movf PRODH, w ; w=PRODH

addwfc INDF2 ; C(k)=C(k)+PRODH+carryflag

clrf carryH ; carryH=0

btfsc STATUS,0 ; test for carryflag

incf carryH ; carryH++

addwf INDF2 ; C(k)=C(k)+carryH

btfsc STATUS,0 ; test for carryflag

incf carryH ; carryH++

decfsz loop ; loop test

bra loop02 ; jump

decfsz out_loop ; loop test

bra loopOuter ; jump

#endasm

}

/********************************/

/* Function Name: lip_subt */

/* C = A - B */

/* A,B,C = 32 byte arrays */

/* Return: borrow */

/********************************/

int lip_subt(byte *A, byte *B, byte *C)

{

BYTE loop;

#asm

movff A, FSR0L ; Copy addresses to FSRs for indirect access
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movff &A+1, FSR0H

movff B, FSR1L

movff &B+1, FSR1H

movff C, FSR2L

movff &C+1, FSR2H

movlw 31 ; Copy 32 to w

movwf loop ; Copy w to loop

movff POSTINC0,INDF2 ; Copy B to C since adds are done in-place

movf POSTINC1,0 ; Copy A to W

subwf POSTINC2 ; C = C-w

loopSub:

movff POSTINC0,INDF2 ; Copy B to C since adds are done in-place

movf POSTINC1,0 ; w=B

subwfb POSTINC2 ; C = C-w-c

decfsz loop ; loop test

bra loopSub ; jump

btfsc STATUS.0 ; test borrow

bra noborrow

nop

movlw 0x01

movwf loop

noborrow:

#endasm

return loop;

}

/********************************/

/* Function Name: lip_rshift */

/* A A >> 1 */

/* A = 32 byte array */

/* Return: N/A */

/********************************/

void lip_rshift(byte *A)

{

BYTE loop;

BYTE *temp;

temp=A+31;

#asm

movff temp, FSR0L ; Copy address to FSR for indirect access

movff &temp+1, FSR0H

movlw 32 ; Copy 32 to w

movwf loop ; Copy w to loop

bcf STATUS,0 ; Clear carry flag

loopRot:

rrcf POSTDEC0

decfsz loop ; loop test
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bra loopRot ; jump

#endasm

}

/********************************/

/* Function Name: lip_notzero */

/* A = 32 byte arrays */

/* Return: 1 if not zero */

/********************************/

int lip_notzero(byte *A)

{

byte n;

for(n=0;n<32;n++)

if (A[n]!=0)

break;

if (n==32)

return 0;

else

return 1;

}

/********************************/

/* Function Name: lip_isone */

/* A = 32 byte arrays */

/* Return: 1 if value is one */

/********************************/

int lip_isone(byte *A)

{

byte n;

for(n=1;n<32;n++)

if (A[n]!=0)

break;

if ((n==32)&&(A[0]==1))

return 1;

else

return 0;

}

/********************************/

/* Function Name: lip_inv */

/* B = A^-1 */

/* A,B = 32 byte arrays */

/* Return: N/A */

/* Binary Euclidean Algorithm */

/********************************/

void lip_inv(byte *A, byte *B)

{

byte n,t;

lip_copy(A,u);

lip_copy(modulus,v);

for(n=0;n<32;n++)
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{

x1[n]=0;

x2[n]=0;

}

x1[0]=1;

/* While u !=1 and v !=1 */

while ((lip_isone(u) || lip_isone(v))==0)

{

while(!(u[0]&1)) /* While u is even */

{

lip_rshift(u); /* divide by 2 */

if (!(x1[0]&1)) /* if x1 is even */

lip_rshift(x1); /* Divide by 2 */

else

{

lip_add(x1,modulus,tempm); /* tempm=x1+p */

lip_copy(tempm,x1); /* x1=tempm */

lip_rshift(x1); /* Divide by 2 */

}

}

while(!(v[0]&1)) /* While v is even */

{

lip_rshift(v); /* divide by 2 */

if (!(x2[0]&1)) /* if x1 is even */

lip_rshift(x2); /* Divide by 2 */

else

{

lip_add(x2,modulus,tempm); /* tempm=x1+p */

lip_copy(tempm,x2); /* x1=tempm */

lip_rshift(x2); /* Divide by 2 */

}

}

t=lip_subt(u,v,tempm); /* tempm=u-v */

if (t==0) /* If u > 0 */

{

lip_copy(tempm,u); /* u=u-v */

lip_sub(x1,x2,tempm); /* tempm=x1-x2 */

lip_copy(tempm,x1); /* x1=x1-x2 */

}

else

{

lip_subt(v,u,tempm); /* tempm=v-u */

lip_copy(tempm,v); /* u=u-v */

lip_sub(x2,x1,tempm); /* tempm=x2-x1 */

lip_copy(tempm,x2); /* x2=x2-x1 */

}

}

if (lip_isone(u))

lip_copy(x1,B);

else

lip_copy(x2,B);

}

/********************************/
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/* Function Name: lip_copy */

/* B = A */

/* A,B = 32 byte arrays */

/* Return: N/A */

/********************************/

void lip_copy(byte *A, byte *B)

{

BYTE loop;

#asm

movff A, FSR0L ; Copy address to FSR for indirect access

movff &A+1, FSR0H

movff B, FSR1L

movff &B+1, FSR1H

movlw 32 ; Copy 32 to w

movwf loop ; Copy w to loop

loopCopy:

movff POSTINC0,POSTINC1 ; Copy B to A

decfsz loop ; loop test

bra loopCopy ; jump

#endasm

}

/********************************/

/* Function Name: lip_addt */

/* C = A + B */

/* A,B,C = 32 byte arrays */

/* Return: carry */

/********************************/

int lip_addt(byte *A, byte *B, byte *C)

{

BYTE loop;

#asm

movff A, FSR0L ; Copy address to FSR for indirect access

movff &A+1, FSR0H

movff B, FSR1L

movff &B+1, FSR1H

movff C, FSR2L

movff &C+1, FSR2H

movlw 31 ; Copy 32 to w

movwf loop ; Copy w to loop

movff POSTINC1,INDF2 ; Copy B to C since adds are done in-place

movf POSTINC0,0 ; Copy A to W

addwf POSTINC2 ; C = W+C

loopAdd:

movff POSTINC1,INDF2 ; Copy B to C since adds are done in-place

movf POSTINC0,0 ; w=A

addwfc POSTINC2 ; C=C+w+c

decfsz loop ; loop test

bra loopAdd ; jump
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btfss STATUS.0 ; test carry

bra nocarry

nop

movlw 0x01

movwf loop

nocarry:

#endasm

return loop;

}

void main(void)

{

byte n;

/* Set up timer to increment every instruction cycle */

/* At 48MHz this is at 12Mhz so period=.083333uS */

setup_timer_1(T1_INTERNAL);

/* Set Timer to 0 */

set_timer1(0);

lip_add(x,x,y);

lip_sub(x,x,y);

lip_mul(x,x,bz);

lip_modp(z,bz);

lip_inv(x,z);

/* Get Timer Value */

time=get_timer1();

/* Wait here to keep debugger active */

while(1);

}
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